Multiscale Modeling in Cell Biomechanics

Andre Montes (he/him)
amontes@berkeley.edu
Mechanical Engineering Ph.D. Student
Molecular Cell Biomechanics | Berkeley Biomechanics

Mechanical Engineering

UNIVERSITY OF CALIFORNIA, BERKELE

The Body is a multiscale system

So... cell biomechanics?

The Body is a multiscale system: Hearing Example

The Body is a multiscale system: Hearing Example

Cell as a multiscale biomechanical system

Modeling multiscale cell mechanics with appropriate methods

Cell Modeling: A (brief) History

The cell as a water balloon

Fig. 2(a) Sketch of a cell in a micropipette aspiration test

Fig. 2(b) Sketch of a leukocyte in recovery test, before and after the spherical shape is recovered

Fig. 3(c)

The cell as a water balloon

Fig. 2(a) Sketch of a cell in a micropipette aspiration test

The cell as a water balloon

Fig. 2(b) Sketch of a leukocyte in recovery test, before and after the spherical shape is recovered

The cell as a tensegrity structure

Models for the Specific Adhesion of Cells to Cells

A theoretical framework for adhesion mediated by reversible bonds between cell surface molecules

George I. Bell

3D soft matter cell model for cell spreading

3D soft matter cell model validation

3D soft matter cell model for cell spreading

3D soft matter cell model for cell spreading

Case Study: A Micromechanical System for the Spine

The Intervertebral Disc of the Spine as a multiscale system

Disc Degeneration:

- 8M spine pathologies / year¹
- \$100B healthcare costs / year²

Micromechanical chip design

Micromechanical chip model

Establishing physiological relevancy

	Circumferential:Radial	Axial:Radial
Posterior AF	0.05 ± 0.35^{31}	-0.95 ± 1.17^{31}
Spine-on-a-chip	-0.0025 ± 0.07	-0.77 ± 0.06
Uniaxial Cell Stretcher*	n/a	-0.55 to -0.4 ³⁸
10 011 (0 -)		

^{*}Strex Cell (Strex Inc.)

What about the loads imparted to the cells and

molecules?

Multiscale model to predict cell deformation with varying ECM Stiffness

Multiscale model to predict cell deformation with varying ECM Stiffness

Multiscale model to predict cell deformation with varying ECM Stiffness

What about the loads imparted to the cells and molecules?

Advantages of multiscale modeling in cell biomechanics

Representative of the system

Multiscale modeling limitations

Expensive

Excessive

Cumbersome to validate

The cell is a multiscale biomechanical system that can be modeled using multiscale mechanics

Andre Montes (he/him)
amontes@berkeley.edu
Mechanical Engineering Ph.D. Student
Molecular Cell Biomechanics | Berkeley Biomechanics

