Supplementary Material for Multiscale Computational Framework to Investigate Integrin Mechanosensing and Cell Adhesion

Andre R. Montes, Gabriela Gutierrez, Adrian Buganza Tepole, Mohammad R.K. Mofrad

Author's note: The parameters used for the simulations are listed in the following tables for reference. The code for the molecular dynamics (MD) simulations and whole-cell finite element (FE) simulations are available on Github.

- https://github.com/dredremontes/pull_integrinMD
- https://github.com/dredremontes/wholeCellFE

The supplementary material contains:

- Finite Element (Whole-cell) Model Equations
- Table S1: Energy Minimization Parameters
- Table S2: NVT Parameters
- Table S3: NPT Parameters
- Table S4: Steered MD Parameters
- Table S5: Force Distribution Analysis Parameters
- Table S6: Whole-cell model parameters
- Fig. S1: Energy Minimization and NVT RMSD
- Fig. S2: NPT RMSD, Pressure, and Temperature
- Fig. S3: Whole-cell Model Meshes
- Fig. S4: Whole-cell Model Mesh Convergence
- Fig. S5: Whole-cell Model Timestep Convergence
- Movie S1: 1nm/ns extension of $\alpha_5\beta_1$ -FN
- Movie S2: 10nm/ns extension of $\alpha_5\beta_1$ -FN
- Movie S3: 1nm/ns Force Distribution Analysis
- Movie S4: 10nm/ns Force Distribution Analysis
- Movie S5: All Whole-cell simulations

The movies are in separate .mp4 files.

Finite Element (Whole-cell) Model Equations

The triangular mesh is handled through the object SurfTrack part of the ElTopo library https://github.com/tysonbrochu/eltopo. Two SurfTrack objects are created, one for the cell mesh and one for the substrate mesh. The SurfTrack contains the nodal coordinates which we denote \mathbf{x}_t , the connectivity tri_mesh, and an additional connectivity which for every node stores the *one ring*, i.e. the nodes adjacent to a given node, which we refer to as node_onering. There is also a flag for nodes on the boundary of the surface. We modified the original library to also store nodal velocities, accelerations, and previous value of the strain. These vectors are named \mathbf{v}_t , \mathbf{a}_t , \mathbf{e}_t . For the cell mesh we also define one more vector field associated with the nodes, \mathbf{u}_i , that contains the displacement vector of an integrin-ligand bond with respect to its stress-free state. Lastly, for the cell mesh we also store a scalar field *C* with the local integrin-bound fraction as described in the main text.

The integration is done explicitly with the midpoint rule. Given the current value of positions, velocities and accelerations, the midpoint velocity is calculated as

$$\mathbf{V}_{t+0.5\Delta t} = \mathbf{V}_t + \frac{\Delta t}{2} \mathbf{A}_t \,. \tag{S1}$$

Then the updated positions are computed as

$$\mathbf{X}_{t+\Delta t} = \mathbf{X}_t + \Delta t \mathbf{V}_{t+0.5\Delta t} \,. \tag{S2}$$

Given the updated positions, the forces at the nodes are computed with the weak form. As described in the main text, the residual of internal forces is

$$\mathbf{R} = -\int_{\Omega} \boldsymbol{\sigma} : \delta \mathbf{d} \, d\Omega \tag{S3}$$

Computation of eq. (S3) is done with standard linear triangular finite element interpolation. The residual is calculated independently for the cell and substrate meshes. Additionally, as noted in the main text, the cell has two components of the stress, a passive and an active component, whereas the substrate only has a passive component. The code is in an updated Lagrangian framework, whereby the strain at the previous time step \mathbf{e}_t gets updated based on the updated nodal coordinates $\mathbf{x}_{t+\Delta t}$ by updating the left Cauchy-Green deformation

$$\mathbf{B}_{t+\Delta t} = \mathbf{F} \mathbf{b}_t \mathbf{F}^{\top} \,, \tag{S4}$$

where **F** denotes the deformation gradient from the incremental deformation \mathbf{x}_t to $\mathbf{x}_{t+\Delta t}$. The external force acting at a particular node of the cell mesh is

$$\mathbf{f}_{c,ext} = \mathbf{f}_{i,node} + \mathbf{f}_d + \mathbf{f}_\kappa + \mathbf{f}_{ac} + \mathbf{f}_A, \qquad (S5)$$

where $\mathbf{f}_{i,node}$ is the force due to integrin at each node, \mathbf{f}_d is viscous drag, \mathbf{f}_{κ} is curvature regularization, \mathbf{f}_{ac} is a random fluctuation at the cell boundary from actin polymerization, and \mathbf{f}_A is an area penalty to counteract cell contractility. The force from integrin at each node is defined in the main text:

$$\mathbf{f}_{i,node} = C \boldsymbol{\rho}_{i_{max}} A k_{int} \mathbf{u_{int}} \,. \tag{S6}$$

The viscous drag is

$$\mathbf{f}_d = -d\mathbf{u}\,,\tag{S7}$$

where $\mathbf{u} = \mathbf{x}_{t+\Delta t} - \mathbf{x}$ is the displacement of the node and $d = 0.001 \text{ pN}/\mu\text{m}$ is a small drag coefficient. The curvature force is calculated only for nodes on the boundary. Discrete curvature κ is approximated based on twice the turning angle along the boundary curve divided by the length of the curve. Given the curvature, the force is

$$\mathbf{f}_{\kappa} = -k_{\kappa}\kappa \frac{l_b}{2}\mathbf{n},\tag{S8}$$

where **n** is the outward unit normal at the boundary and $k_{\kappa} = 20 \text{pN}/\mu\text{m}$ is a small bending stiffness to prevent buckling and ruffling of the boundary, and l_b is the length of the edges incident at a node on the boundary. The actin polymerization fluctuation is also only at the boundary

$$\mathbf{f}_{ac} = f_{ac} \mathbf{n},\tag{S9}$$

where f_{ac} is a random force computed from sampling of a Poisson process. Specifically, an actin polymerization rate of $k_{ac} = 10s^{-1}$ was assumed [1]. The density of actin monomers near the boundary was estimated to be $\rho_{ac} \approx 100$ monomer/ μ m [2], and the individual monomer force to be 5pN [3]. To compute f_{ac} , we first determined the number of possible events at a node to be proportional to $n_{ac} = \rho_{ac}l_b/2$, where l_b is the length of the edges incident to the boundary node. Then, we performed a for loop over n_{ac} and for each iteration sampling a random number from $p_{ac} \mathscr{U}([0,1])$ and if $p_ac < k_{ac}\Delta t \exp(-k_{ac}\Delta t)$, we updated the actin force as $f_{ac} \leftarrow f_{ac} + 5pN$.

Finally, the area constraint is also only applied at the boundary nodes and it is

$$\mathbf{f}_A = -p_A (A_{tot} - A_0) \frac{l_b}{2} \mathbf{n}, \qquad (S10)$$

where A_{tot} is the entire area of the cell, A_0 is an attractor for the area, and the length of the curve associated with the node is l_b as before, just as the normal is also associated with the node and it is the outward unit normal as before. The strength of this constraint is imposed with the pressure parameter $p_A = 1\text{pN}/\mu\text{m}$. In reality the effects of the regularization terms is small but allows to keep the simulation stable and correspond to physically meaningful phenomena.

For the substrate the only contributions are

$$\mathbf{f}_{s,ext} = -\mathbf{f}_{i,node} + \mathbf{f}_d \,. \tag{S11}$$

Note that the force from integrin acts in the opposite direction on the substrate compared to the cell. Given the force in the cell or the substrate, \mathbf{f}_{ext} , the acceleration is updated by:

$$\mathbf{a}_{t+\Delta t} = \mathbf{M}^{-1} (\mathbf{f}_{ext} - D\mathbf{M}\mathbf{v}_{t+0.5\Delta t})$$
(S12)

with **M** being the respective diagonal mass matrix and a damping coefficient of D = 0.001 1/s. Lastly, the velocities are updated

$$\mathbf{v}_{t+\Delta t} = \mathbf{v}_{t+0.5\Delta t} + \frac{\Delta t}{2} \mathbf{a}_{t+\Delta t} \,. \tag{S13}$$

One additional set of updates in the model is the change of the displacement of the integrin-ligand pair \mathbf{u}_i as the cell and substrate deform. From the cell deformation, the update is

$$\mathbf{u}_i \leftarrow \mathbf{u}_i + \mathbf{u}_{cell} \,, \tag{S14}$$

where $\mathbf{u}_{cell} = \mathbf{x}_{t+\Delta t} - \mathbf{x}_t$ is nothing but the corresponding displacement of the node on the cell. However, for the substrate, the process is slightly more involved. Since the \mathbf{u}_i is associated with the nodes of the cell mesh, we first get the triangle in the substrate mesh this corresponds to and then update

$$\mathbf{u}_i \leftarrow \mathbf{u}_i - \mathbf{u}_{subs}, \tag{S15}$$

where \mathbf{u}_{subs} is the interpolated displacement of the substrate at the correct location of the node from the cell mesh. Because when forms break and new bonds form they are not assumed to be pre-strained, there is some dissipation associated with this drift in the reference configuration of the integrin-ligand bond stretch, captured by

$$\mathbf{u}_i \leftarrow \mathbf{u}_i (C_t - \Delta t K_{off} C_t) / C \tag{S16}$$

which reduces the stretch in the integrin proportional to the number of broken bonds with respect to the previous integrin-ligand bond fraction C_t . If $C_t - \Delta t K_{off}C_t \le 0$ then the stretch of the integrin-ligand bonds is set to **0**.

References

- [1] Dimitrios Vavylonis, Qingbo Yang, and Ben O'Shaughnessy. Actin polymerization kinetics, cap structure, and fluctuations. *Proceedings of the National Academy of Sciences*, 102(24):8543–8548, 2005.
- [2] Matthew J Footer, Jacob WJ Kerssemakers, Julie A Theriot, and Marileen Dogterom. Direct measurement of force generation by actin filament polymerization using an optical trap. *Proceedings of the National Academy of Sciences*, 104(7):2181–2186, 2007.
- [3] Serge Dmitrieff and François Nédélec. Amplification of actin polymerization forces. 2016.

Parameter	Setting	
Algorithm	Gradient descent	
Energy tolerance	10 kJ/mol/nm	
Energy step size	0.005nm	
Number of steps	15000	
Neighbor list update frequency	1 step	
Cutoff scheme	Verlet	
Method to determine neighbor list	Grid	
Short range force cut-off for neighbor list	1.4nm	
Electrostatics	Fast smooth Particle-Mesh Ewald (SPME)	
Short-range electrostatic cut-off	1.4nm	
Short-range Van der Waals cut-off	1.4nm	

Table S1: Energy Minimization Parameters

Parameter	Setting	
Time step	2fs	
Number of steps (Time)	5000000 (10ns)	
Integrator	Leapfrog algorithm	
Constraint Algorithm	LINear Constraint Solver (LINCS)	
Constraints	H-bonds constrained	
Cutoff scheme	Verlet (Buffered neighbor searching)	
Short-range electrostatic cutoff	1.0nm	
Short-range van der Waals cutoff	1.0nm	
Electrostatics	Fast smooth Particle-Mesh Ewald (SPME)	
Interpolation order	Cubic	
Grid spacing for fast Fourier Transform	0.16nm	
Temperature coupling	V-rescale (modified Berendsen themostat)	
Reference temperature	310K	
Temperature time constant	0.1ps	
Temperature coupled groups	Protein and non-protein	
Pressure coupling	Off	
Dispersion correction	long range dispersion corrections for energy and pressure	
Velocity generation	On	
Temperature for velocity generation	310K	

Table S2: NVT Simulation Parameters

Parameter	Setting	
Time step	2fs	
Number of steps (Time)	5000000 (10ns)	
Integrator	Leapfrog algorithm	
Constraint Algorithm	LINear Constraint Solver (LINCS)	
Constraints	H-bonds constrained	
Cutoff scheme	Verlet (Buffered neighbor searching)	
Short-range electrostatic cutoff	1.0nm	
Short-range van der Waals cutoff	1.0nm	
Electrostatics	Fast smooth Particle-Mesh Ewald (SPME)	
Interpolation order	Cubic	
Grid spacing for fast Fourier Transform	0.16nm	
Temperature coupling	V-rescale (modified Berendsen themostat)	
Reference temperature	310K	
Temperature time constant	0.1ps	
Temperature coupled groups	Protein and non-protein	
Pressure coupling	Isotropic Parrinello-Rahman	
Pressure time constant	1.0ps	
Reference pressure	1.0bar	
Compressibility	4.5e-5 bar-1	
Dispersion correction	long range dispersion corrections for energy and pressure	
Velocity generation	Off	

Table S3: NPT Simulation Parameters

Time step2fsNumber of steps (Time) for 1nm/ns12500000 (25ns)Number of steps (Time) for 10nm/ns1500000 (3ns)IntegratorLeapfrog algorithmConstraint AlgorithmLINear Constraint Solver (LINCS)ConstraintsH-bonds constrainedCutoff schemeVerlet (Buffered neighbor searching)Short-range neighbor list cutoff1.4nmShort-range van der Waals cutoff1.4nmElectrostaticsFast smooth Particle-Mesh Ewald (SPME)Interpolation orderCubicGrid spacing for fast Fourier Transform0.12nmTemperature couplingNosé-HooverReference temperature310KTemperature time constant1.0psPressure couplingOffDispersion correctionVelocity generationVelocity generationMigrand Dispersion correctionVelocity generationSo kJ/mol-nm²Pull directiony-direction (vertical)Pull rate for 1nm/ns0.001nm/ps = 1nm/nsPull rate for 10m/ns0.0100m/ps = 10m/ns	Parameter	Setting	
Number of steps (Time) for 1nm/ns12500000 (25ns)Number of steps (Time) for 10nm/ns1500000 (3ns)IntegratorLeapfrog algorithmConstraint AlgorithmLINear Constraint Solver (LINCS)ConstraintsH-bonds constrainedCutoff schemeVerlet (Buffered neighbor searching)Short-range neighbor list cutoff1.4nmShort-range van der Waals cutoff1.4nmElectrostaticsFast smooth Particle-Mesh Ewald (SPME)Interpolation orderCubicGrid spacing for fast Fourier Transform0.12nmTemperature couplingNosé-HooverReference temperature310KTemperature time constant1.0psPressure couplingOffDispersion correctionOffVelocity generationVerlet in umbrellaForce constant50 kJ/mol-nm²Pull directiony-direction (vertical)Pull rate for 10nm/ns0.001nm/ps = 10m/ns	Time step	2fs	
Number of steps (Time) for 10nm/ns1500000 (3ns)IntegratorLeapfrog algorithmConstraint AlgorithmLINear Constraint Solver (LINCS)ConstraintsH-bonds constrainedCutoff schemeVerlet (Buffered neighbor searching)Short-range neighbor list cutoff1.4nmShort-range electrostatic cutoff1.4nmShort-range van der Waals cutoff1.4nmElectrostaticsFast smooth Particle-Mesh Ewald (SPME)Interpolation order0.12nmGrid spacing for fast Fourier TransformNosé-HooverTemperature couplingNosé-HooverReference temperature310KTemperature time constant1.0psPressure couplingOffDispersion correctionOffVelocity generationOffHarmonic potentialUmbrellaForce constant50 kJ/mol-nm²Pull directiony-direction (vertical)Pull rate for 10m/ns0.001nm/ps = 10m/ns	Number of steps (Time) for 1nm/ns	12500000 (25ns)	
IntegratorLeapfrog algorithmConstraint AlgorithmLINear Constraint Solver (LINCS)ConstraintsH-bonds constrainedCutoff schemeVerlet (Buffered neighbor searching)Short-range neighbor list cutoff1.4nmShort-range electrostatic cutoff1.4nmShort-range van der Waals cutoff1.4nmElectrostaticsFast smooth Particle-Mesh Ewald (SPME)Interpolation orderCubicGrid spacing for fast Fourier Transform0.12nmTemperature couplingNosé-HooverReference temperature310KTemperature time constant1.0psTemperature coupled groupsProtein and non-proteinPressure couplingOffDispersion correctionlong range dispersion corrections for energy and pressureVelocity generationOffHarmonic potentialUmbrellaForce constant50 kJ/mol-nm²Pull directiony-direction (vertical)Pull rate for 10m/ns0.001nm/ps = 10m/ns	Number of steps (Time) for 10nm/ns	1500000 (3ns)	
Constraint AlgorithmLINear Constraint Solver (LINCS)ConstraintsH-bonds constrainedCutoff schemeVerlet (Buffered neighbor searching)Short-range neighbor list cutoff1.4nmShort-range electrostatic cutoff1.4nmShort-range van der Waals cutoff1.4nmElectrostaticsFast smooth Particle-Mesh Ewald (SPME)Interpolation orderCubicGrid spacing for fast Fourier Transform0.12nmTemperature couplingNosé-HooverReference temperature310KTemperature time constant1.0psTemperature coupled groupsProtein and non-proteinPressure couplingOffDispersion correctionIong range dispersion corrections for energy and pressureVelocity generationOffHarmonic potential50 kJ/mol-nm²Pull directiony-direction (vertical)Pull rate for 10m/ns0.001nm/ps = 10nm/ns	Integrator	Leapfrog algorithm	
ConstraintsH-bonds constrainedCutoff schemeVerlet (Buffered neighbor searching)Short-range neighbor list cutoff1.4nmShort-range electrostatic cutoff1.4nmShort-range van der Waals cutoff1.4nmElectrostaticsFast smooth Particle-Mesh Ewald (SPME)Interpolation orderCubicGrid spacing for fast Fourier Transform0.12nmTemperature couplingNosé-HooverReference temperature310KTemperature coupled groupsProtein and non-proteinPressure couplingOffDispersion correctionOffVelocity generationOffHarmonic potential50 kJ/mol-nm²Force constant50 kJ/mol-nm²Pull directiony-direction (vertical)Pull rate for 10mn/ns0.010nm/ps = 10mn/ns	Constraint Algorithm	LINear Constraint Solver (LINCS)	
Cutoff schemeVerlet (Buffered neighbor searching)Short-range neighbor list cutoff1.4nmShort-range electrostatic cutoff1.4nmShort-range van der Waals cutoff1.4nmElectrostaticsFast smooth Particle-Mesh Ewald (SPME)Interpolation orderCubicGrid spacing for fast Fourier Transform0.12nmTemperature couplingNosé-HooverReference temperature310KTemperature coupled groupsProtein and non-proteinPressure couplingOffDispersion correctionOffVelocity generationOffHarmonic potential50 kJ/mol-nm²Force constant50 kJ/mol-nm²Pull directiony-direction (vertical)Pull rate for 10nm/ns0.010nm/ps = 10mm/ns	Constraints	H-bonds constrained	
Short-range neighbor list cutoff1.4nmShort-range electrostatic cutoff1.4nmShort-range van der Waals cutoff1.4nmElectrostatics1.4nmElectrostaticsFast smooth Particle-Mesh Ewald (SPME)Interpolation orderCubicGrid spacing for fast Fourier Transform0.12nmTemperature couplingNosé-HooverReference temperature310KTemperature time constant1.0psTemperature coupled groupsProtein and non-proteinPressure couplingOffDispersion correctionVelocity generationVelocity generation50 kJ/mol-nm²Harmonic potential50 kJ/mol-nm²Pull directiony-direction (vertical)Pull rate for 10nm/ns0.010nm/ps = 10mm/ns	Cutoff scheme	Verlet (Buffered neighbor searching)	
Short-range electrostatic cutoff1.4nmShort-range van der Waals cutoff1.4nmElectrostaticsFast smooth Particle-Mesh Ewald (SPME)Interpolation orderCubicGrid spacing for fast Fourier Transform0.12nmTemperature couplingNosé-HooverReference temperature310KTemperature time constant1.0psTemperature coupled groupsProtein and non-proteinPressure couplingOffDispersion correctionlong range dispersion corrections for energy and pressureVelocity generationOffHarmonic potential50 kJ/mol-nm²Pull directiony-direction (vertical)Pull rate for 10mm/ns0.001nm/ps = 10mm/nsPull rate for 10mm/ns0.010nm/ps = 10nm/ns	Short-range neighbor list cutoff	1.4nm	
Short-range van der Waals cutoff Electrostatics1.4nmElectrostaticsFast smooth Particle-Mesh Ewald (SPME)Interpolation orderCubicGrid spacing for fast Fourier Transform Temperature coupling Reference temperature0.12nmTemperature coupling Reference temperatureNosé-HooverTemperature time constant Temperature coupled groups Pressure coupling1.0psDispersion correction Velocity generation Harmonic potential Force constant Pull directionOffPull direction Pull rate for 10nm/ns0.001nm/ps = 10nm/ns	Short-range electrostatic cutoff	1.4nm	
ElectrostaticsFast smooth Particle-Mesh Ewald (SPME)Interpolation orderCubicGrid spacing for fast Fourier Transform0.12nmTemperature couplingNosé-HooverReference temperature310KTemperature time constant1.0psTemperature coupled groupsProtein and non-proteinPressure couplingOffDispersion correctionOffVelocity generationUmbrellaForce constant50 kJ/mol-nm²Pull directiony-direction (vertical)Pull rate for 1nm/ns0.001nm/ps = 10mm/ns	Short-range van der Waals cutoff	1.4nm	
Interpolation orderCubicGrid spacing for fast Fourier Transform0.12nmTemperature couplingNosé-HooverReference temperature310KTemperature time constant1.0psTemperature coupled groupsProtein and non-proteinPressure couplingOffDispersion correctionIong range dispersion corrections for energy and pressureVelocity generationOffHarmonic potential50 kJ/mol-nm²Pull directiony-direction (vertical)Pull rate for 1nm/ns0.010nm/ps = 10m/ns	Electrostatics	Fast smooth Particle-Mesh Ewald (SPME)	
Grid spacing for fast Fourier Transform Temperature coupling Reference temperature0.12nmReference temperatureNosé-HooverTemperature time constant1.0psTemperature coupled groups Pressure couplingProtein and non-protein OffDispersion correction Velocity generation Harmonic potential Pull directionIong range dispersion corrections for energy and pressure OffPull direction Pull rate for 1nm/ns Pull rate for 10nm/ns0.001nm/ps = 1nm/ns 0.010nm/ps = 10nm/ns	Interpolation order	Cubic	
Temperature coupling Reference temperatureNosé-Hoover 310KTemperature time constant1.0psTemperature coupled groups Pressure couplingProtein and non-protein OffDispersion correction Velocity generation Harmonic potential Force constantIong range dispersion corrections for energy and pressure OffPull direction Pull rate for 1nm/ns Pull rate for 10nm/nsJong range dispersion corrections for energy and pressure OffOff Umbrella 0.001nm/ps = 10nm/nsJong range dispersion corrections for energy and pressure	Grid spacing for fast Fourier Transform	0.12nm	
Reference temperature310KTemperature time constant1.0psTemperature coupled groupsProtein and non-proteinPressure couplingOffDispersion correctionlong range dispersion corrections for energy and pressureVelocity generationOffHarmonic potentialUmbrellaForce constant50 kJ/mol-nm²Pull directiony-direction (vertical)Pull rate for 1nm/ns0.001nm/ps = 1nm/nsPull rate for 10nm/ns0.010nm/ps = 10nm/ns	Temperature coupling	Nosé-Hoover	
Temperature time constant1.0psTemperature coupled groupsProtein and non-proteinPressure couplingOffDispersion correctionlong range dispersion corrections for energy and pressureVelocity generationOffHarmonic potentialUmbrellaForce constant50 kJ/mol-nm²Pull directiony-direction (vertical)Pull rate for 1nm/ns0.001nm/ps = 1nm/nsPull rate for 10nm/ns0.010nm/ps = 10nm/ns	Reference temperature	310K	
Temperature coupled groups Pressure couplingProtein and non-protein OffDispersion correction Velocity generation Harmonic potential Force constant Pull directionIong range dispersion corrections for energy and pressure OffDispersion correction UmbrellaOffSo kJ/mol-nm² y-direction (vertical)Pull rate for 10nm/ns Pull rate for 10nm/ns0.0010nm/ps = 10nm/ns	Temperature time constant	1.0ps	
Pressure couplingOffDispersion correctionlong range dispersion corrections for energy and pressureVelocity generationOffHarmonic potentialUmbrellaForce constant50 kJ/mol-nm²Pull directiony-direction (vertical)Pull rate for 1nm/ns0.001nm/ps = 1nm/nsPull rate for 10nm/ns0.010nm/ps = 10nm/ns	Temperature coupled groups	Protein and non-protein	
Dispersion correction Velocity generation Harmonic potential Force constant Pull directionlong range dispersion corrections for energy and pressure Off Umbrella 50 kJ/mol-nm² y-direction (vertical) 0.001nm/ps = 1nm/ns 0.010nm/ps = 10nm/ns	Pressure coupling	Off	
Velocity generationOffHarmonic potentialUmbrellaForce constant50 kJ/mol-nm²Pull directiony-direction (vertical)Pull rate for 1nm/ns0.001nm/ps = 1nm/nsPull rate for 10nm/ns0.010nm/ps = 10nm/ns	Dispersion correction	long range dispersion corrections for energy and pressure	
Harmonic potentialUmbrellaForce constant50 kJ/mol-nm²Pull directiony-direction (vertical)Pull rate for 1nm/ns0.001nm/ps = 1nm/nsPull rate for 10nm/ns0.010nm/ps = 10nm/ns	Velocity generation	Off	
Force constant50 kJ/mol-nm²Pull directiony-direction (vertical)Pull rate for 1nm/ns0.001nm/ps = 1nm/nsPull rate for 10nm/ns0.010nm/ps = 10nm/ns	Harmonic potential	Umbrella	
Pull directiony-direction (vertical)Pull rate for 1nm/ns0.001nm/ps = 1nm/nsPull rate for 10nm/ns0.010nm/ps = 10nm/ns	Force constant	50 kJ/mol-nm ²	
Pull rate for 1nm/ns0.001nm/ps = 1nm/nsPull rate for 10nm/ns0.010nm/ps = 10nm/ns	Pull direction	y-direction (vertical)	
Pull rate for 10nm/ns0.010nm/ps = 10nm/ns	Pull rate for 1nm/ns	0.001 nm/ps = 1 nm/ns	
	Pull rate for 10nm/ns	0.010 nm/ps = 10 nm/ns	

Table S4: Steered Molecular Dynamics Parameters

Parameter	Setting	
Pairwise forces	Summed	
Pairwise groups	Protein	
Residue based calculation	Punctual Stress	
Pairwise force type	Coulombic interactions only	

Table S5: Force Distribution Analysis Parameter Settings

Table S6: Whole-cell Model Parameter Settings

Parameter	Variable	Setting
Substrate modulus	μ_s	1 MPa
Cell modulus	μ_c	1 kPa
Max $\alpha_5\beta_1$ -FN concentration	$ ho_{i,max}$	$100 \mu m^{-2}$
Time step	δt	0.0005s
Catch-slip bond parameters	Ka	$0.004 \ s^{-1}$
	K_b	$10s^{-1}$
	F_a	15pN
	F_b	15 pN

Figure S1: A) Energy minimization and B) root-mean-square deviation (RMSD) during 1ns NVT simulation of $\alpha_5\beta_1$ -FN

Figure S2: A) RMSD, B) Pressure, and C) Temperature of $\alpha_5\beta_1$ -FN after 10ns NPT simulation indicative of an equilibrated system

Figure S3: A) 500-element mesh. B) 1000-element mesh. C) 3000-element mesh.

Figure S4: Mesh convergence (n=3 runs per mesh) of A) Bond concentration and B) force per bond. Average of C) bond concentration and D) force per bond across three runs. We chose the constant k_{int} =31pN/nm at a timestep of 100 μ s to run the convergence analysis.

Figure S5: Timestep convergence (n=3 runs at 100 μ s and 50 μ s per 1000-element and 3000-element mesh). Bond concentration from A) three runs of 1000-element mesh at a 100 μ s and 50 μ s timestep. B) Three runs of 3000-element mesh at a 100 μ s and 50 μ s timestep. C) Comparison between time-averaged 1000-element and 3000-element mesh runs at a 100 μ s and 50 μ s timestep. Force per bond from D) three runs of 1000-element mesh at a 100 μ s and 50 μ s timestep. E) Three runs of 3000-element mesh at a 100 μ s and 50 μ s timestep. F) Comparison between time-averaged 1000-element mesh at a 100 μ s and 50 μ s timestep. F) Comparison between time-averaged 1000-element and 3000-element mesh at a 100 μ s and 50 μ s timestep. F) Comparison between time-averaged 1000-element and 3000-element mesh at a 100 μ s and 50 μ s timestep. F) Comparison between time-averaged 1000-element and 3000-element mesh at a 100 μ s and 50 μ s timestep. F) Comparison between time-averaged 1000-element and 3000-element mesh at a 100 μ s and 50 μ s timestep. F) Comparison between time-averaged 1000-element and 3000-element mesh at a 100 μ s and 50 μ s timestep. F) Comparison between time-averaged 1000-element and 3000-element mesh runs at a 100 μ s and 50 μ s timestep. We chose the constant k_{int} =31pN/nm to run the convergence analysis.